Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Proteome Res ; 20(5): 2796-2811, 2021 05 07.
Article in English | MEDLINE | ID: covidwho-1387127

ABSTRACT

We performed quantitative metabolic phenotyping of blood plasma in parallel with cytokine/chemokine analysis from participants who were either SARS-CoV-2 (+) (n = 10) or SARS-CoV-2 (-) (n = 49). SARS-CoV-2 positivity was associated with a unique metabolic phenotype and demonstrated a complex systemic response to infection, including severe perturbations in amino acid and kynurenine metabolic pathways. Nine metabolites were elevated in plasma and strongly associated with infection (quinolinic acid, glutamic acid, nicotinic acid, aspartic acid, neopterin, kynurenine, phenylalanine, 3-hydroxykynurenine, and taurine; p < 0.05), while four metabolites were lower in infection (tryptophan, histidine, indole-3-acetic acid, and citrulline; p < 0.05). This signature supports a systemic metabolic phenoconversion following infection, indicating possible neurotoxicity and neurological disruption (elevations of 3-hydroxykynurenine and quinolinic acid) and liver dysfunction (reduction in Fischer's ratio and elevation of taurine). Finally, we report correlations between the key metabolite changes observed in the disease with concentrations of proinflammatory cytokines and chemokines showing strong immunometabolic disorder in response to SARS-CoV-2 infection.


Subject(s)
COVID-19 , Kynurenine , Amines , Cytokines , Humans , SARS-CoV-2
2.
J Proteome Res ; 20(2): 1415-1423, 2021 02 05.
Article in English | MEDLINE | ID: covidwho-1387126

ABSTRACT

The utility of low sample volume in vitro diagnostic (IVDr) proton nuclear magnetic resonance (1H NMR) spectroscopic experiments on blood plasma for information recovery from limited availability or high value samples was exemplified using plasma from patients with SARS-CoV-2 infection and normal controls. 1H NMR spectra were obtained using solvent-suppressed 1D, spin-echo (CPMG), and 2-dimensional J-resolved (JRES) spectroscopy using both 3 mm outer diameter SampleJet NMR tubes (100 µL plasma) and 5 mm SampleJet NMR tubes (300 µL plasma) under in vitro diagnostic conditions. We noted near identical diagnostic models in both standard and low volume IVDr lipoprotein analysis (measuring 112 lipoprotein parameters) with a comparison of the two tubes yielding R2 values ranging between 0.82 and 0.99 for the 40 paired lipoprotein parameters samples. Lipoprotein measurements for the 3 mm tubes were achieved without time penalty over the 5 mm tubes as defined by biomarker recovery for SARS-CoV-2. Overall, biomarker pattern recovery for the lipoproteins was extremely similar, but there were some small positive offsets in the linear equations for several variables due to small shimming artifacts, but there was minimal degradation of the biological information. For the standard untargeted 1D, CPMG, and JRES NMR experiments on the same samples, the reduced signal-to-noise was more constraining and required greater scanning times to achieve similar differential diagnostic performance (15 min per sample per experiment for 3 mm 1D and CPMG, compared to 4 min for the 5 mm tubes). We conclude that the 3 mm IVDr method is fit-for-purpose for quantitative lipoprotein measurements, allowing the preparation of smaller volumes for high value or limited volume samples that is common in clinical studies. If there are no analytical time constraints, the lower volume experiments are equally informative for untargeted profiling.


Subject(s)
COVID-19/diagnosis , Lipoproteins/metabolism , Metabolomics/methods , Proteomics/methods , Proton Magnetic Resonance Spectroscopy/methods , SARS-CoV-2/metabolism , Adult , Aged , Biomarkers/blood , Biomarkers/metabolism , COVID-19/blood , COVID-19/virology , Female , Humans , Lipoproteins/blood , Male , Middle Aged , Protein Interaction Maps , SARS-CoV-2/physiology
3.
EClinicalMedicine ; 39: 101085, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1363995

ABSTRACT

BACKGROUND: SARS-CoV-2 has challenged health service provision worldwide. This work evaluates safe surgical pathways and standard operating procedures implemented in the high volume, global city of London during the first wave of SARS-CoV-2 infection. We also assess the safety of minimally invasive surgery(MIS) for anatomical lung resection. METHODS: This multicentre cohort study was conducted across all London thoracic surgical units, covering a catchment area of approximately 14.8 Million. A Pan-London Collaborative was created for data sharing and dissemination of protocols. All patients undergoing anatomical lung resection 1st March-1st June 2020 were included. Primary outcomes were SARS-CoV-2 infection, access to minimally invasive surgery, post-operative complication, length of intensive care and hospital stay (LOS), and death during follow up. FINDINGS: 352 patients underwent anatomical lung resection with a median age of 69 (IQR: 35-86) years. Self-isolation and pre-operative screening were implemented following the UK national lockdown. Pre-operative SARS-CoV-2 swabs were performed in 63.1% and CT imaging in 54.8%. 61.7% of cases were performed minimally invasively (MIS), compared to 59.9% pre pandemic. Median LOS was 6 days with a 30-day survival of 98.3% (comparable to a median LOS of 6 days and 30-day survival of 98.4% pre-pandemic). Significant complications developed in 7.3% of patients (Clavien-Dindo Grade 3-4) and 12 there were re-admissions(3.4%). Seven patients(2.0%) were diagnosed with SARS-CoV-2 infection, two of whom died (28.5%). INTERPRETATION: SARS-CoV-2 infection significantly increases morbidity and mortality in patients undergoing elective anatomical pulmonary resection. However, surgery can be safely undertaken via open and MIS approaches at the peak of a viral pandemic if precautionary measures are implemented. High volume surgery should continue during further viral peaks to minimise health service burden and potential harm to cancer patients. FUNDING: This work did not receive funding.

5.
J Proteome Res ; 20(6): 3315-3329, 2021 06 04.
Article in English | MEDLINE | ID: covidwho-1233684

ABSTRACT

We present a multivariate metabotyping approach to assess the functional recovery of nonhospitalized COVID-19 patients and the possible biochemical sequelae of "Post-Acute COVID-19 Syndrome", colloquially known as long-COVID. Blood samples were taken from patients ca. 3 months after acute COVID-19 infection with further assessment of symptoms at 6 months. Some 57% of the patients had one or more persistent symptoms including respiratory-related symptoms like cough, dyspnea, and rhinorrhea or other nonrespiratory symptoms including chronic fatigue, anosmia, myalgia, or joint pain. Plasma samples were quantitatively analyzed for lipoproteins, glycoproteins, amino acids, biogenic amines, and tryptophan pathway intermediates using Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry. Metabolic data for the follow-up patients (n = 27) were compared with controls (n = 41) and hospitalized severe acute respiratory syndrome SARS-CoV-2 positive patients (n = 18, with multiple time-points). Univariate and multivariate statistics revealed variable patterns of functional recovery with many patients exhibiting residual COVID-19 biomarker signatures. Several parameters were persistently perturbed, e.g., elevated taurine (p = 3.6 × 10-3 versus controls) and reduced glutamine/glutamate ratio (p = 6.95 × 10-8 versus controls), indicative of possible liver and muscle damage and a high energy demand linked to more generalized tissue repair or immune function. Some parameters showed near-complete normalization, e.g., the plasma apolipoprotein B100/A1 ratio was similar to that of healthy controls but significantly lower (p = 4.2 × 10-3) than post-acute COVID-19 patients, reflecting partial reversion of the metabolic phenotype (phenoreversion) toward the healthy metabolic state. Plasma neopterin was normalized in all follow-up patients, indicative of a reduction in the adaptive immune activity that has been previously detected in active SARS-CoV-2 infection. Other systemic inflammatory biomarkers such as GlycA and the kynurenine/tryptophan ratio remained elevated in some, but not all, patients. Correlation analysis, principal component analysis (PCA), and orthogonal-partial least-squares discriminant analysis (O-PLS-DA) showed that the follow-up patients were, as a group, metabolically distinct from controls and partially comapped with the acute-phase patients. Significant systematic metabolic differences between asymptomatic and symptomatic follow-up patients were also observed for multiple metabolites. The overall metabolic variance of the symptomatic patients was significantly greater than that of nonsymptomatic patients for multiple parameters (χ2p = 0.014). Thus, asymptomatic follow-up patients including those with post-acute COVID-19 Syndrome displayed a spectrum of multiple persistent biochemical pathophysiology, suggesting that the metabolic phenotyping approach may be deployed for multisystem functional assessment of individual post-acute COVID-19 patients.


Subject(s)
COVID-19 , COVID-19/complications , Humans , Lipoproteins , Magnetic Resonance Spectroscopy , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
6.
Anal Chem ; 93(8): 3976-3986, 2021 03 02.
Article in English | MEDLINE | ID: covidwho-1082638

ABSTRACT

We have applied nuclear magnetic resonance spectroscopy based plasma phenotyping to reveal diagnostic molecular signatures of SARS-CoV-2 infection via combined diffusional and relaxation editing (DIRE). We compared plasma from healthy age-matched controls (n = 26) with SARS-CoV-2 negative non-hospitalized respiratory patients and hospitalized respiratory patients (n = 23 and 11 respectively) with SARS-CoV-2 rRT-PCR positive respiratory patients (n = 17, with longitudinal sampling time-points). DIRE data were modelled using principal component analysis and orthogonal projections to latent structures discriminant analysis (O-PLS-DA), with statistical cross-validation indices indicating excellent model generalization for the classification of SARS-CoV-2 positivity for all comparator groups (area under the receiver operator characteristic curve = 1). DIRE spectra show biomarker signal combinations conferred by differential concentrations of metabolites with selected molecular mobility properties. These comprise the following: (a) composite N-acetyl signals from α-1-acid glycoprotein and other glycoproteins (designated GlycA and GlycB) that were elevated in SARS-CoV-2 positive patients [p = 2.52 × 10-10 (GlycA) and 1.25 × 10-9 (GlycB) vs controls], (b) two diagnostic supramolecular phospholipid composite signals that were identified (SPC-A and SPC-B) from the -+N-(CH3)3 choline headgroups of lysophosphatidylcholines carried on plasma glycoproteins and from phospholipids in high-density lipoprotein subfractions (SPC-A) together with a phospholipid component of low-density lipoprotein (SPC-B). The integrals of the summed SPC signals (SPCtotal) were reduced in SARS-CoV-2 positive patients relative to both controls (p = 1.40 × 10-7) and SARS-CoV-2 negative patients (p = 4.52 × 10-8) but were not significantly different between controls and SARS-CoV-2 negative patients. The identity of the SPC signal components was determined using one and two dimensional diffusional, relaxation, and statistical spectroscopic experiments. The SPCtotal/GlycA ratios were also significantly different for control versus SARS-CoV-2 positive patients (p = 1.23 × 10-10) and for SARS-CoV-2 negatives versus positives (p = 1.60 × 10-9). Thus, plasma SPCtotal and SPCtotal/GlycA are proposed as sensitive molecular markers for SARS-CoV-2 positivity that could effectively augment current COVID-19 diagnostics and may have value in functional assessment of the disease recovery process in patients with long-term symptoms.


Subject(s)
COVID-19/diagnosis , Orosomucoid/analysis , Phospholipids/blood , Aged , Biomarkers/blood , COVID-19/blood , Female , Humans , Male , Middle Aged , Multivariate Analysis , Nuclear Magnetic Resonance, Biomolecular/methods , Orosomucoid/chemistry , Phospholipids/chemistry , Proton Magnetic Resonance Spectroscopy/methods , Proton Magnetic Resonance Spectroscopy/statistics & numerical data , ROC Curve , SARS-CoV-2
7.
J Proteome Res ; 20(2): 1382-1396, 2021 02 05.
Article in English | MEDLINE | ID: covidwho-1019738

ABSTRACT

To investigate the systemic metabolic effects of SARS-CoV-2 infection, we analyzed 1H NMR spectroscopic data on human blood plasma and co-modeled with multiple plasma cytokines and chemokines (measured in parallel). Thus, 600 MHz 1H solvent-suppressed single-pulse, spin-echo, and 2D J-resolved spectra were collected on plasma recorded from SARS-CoV-2 rRT-PCR-positive patients (n = 15, with multiple sampling timepoints) and age-matched healthy controls (n = 34, confirmed rRT-PCR negative), together with patients with COVID-19/influenza-like clinical symptoms who tested SARS-CoV-2 negative (n = 35). We compared the single-pulse NMR spectral data with in vitro diagnostic research (IVDr) information on quantitative lipoprotein profiles (112 parameters) extracted from the raw 1D NMR data. All NMR methods gave highly significant discrimination of SARS-CoV-2 positive patients from controls and SARS-CoV-2 negative patients with individual NMR methods, giving different diagnostic information windows on disease-induced phenoconversion. Longitudinal trajectory analysis in selected patients indicated that metabolic recovery was incomplete in individuals without detectable virus in the recovery phase. We observed four plasma cytokine clusters that expressed complex differential statistical relationships with multiple lipoproteins and metabolites. These included the following: cluster 1, comprising MIP-1ß, SDF-1α, IL-22, and IL-1α, which correlated with multiple increased LDL and VLDL subfractions; cluster 2, including IL-10 and IL-17A, which was only weakly linked to the lipoprotein profile; cluster 3, which included IL-8 and MCP-1 and were inversely correlated with multiple lipoproteins. IL-18, IL-6, and IFN-γ together with IP-10 and RANTES exhibited strong positive correlations with LDL1-4 subfractions and negative correlations with multiple HDL subfractions. Collectively, these data show a distinct pattern indicative of a multilevel cellular immune response to SARS CoV-2 infection interacting with the plasma lipoproteome giving a strong and characteristic immunometabolic phenotype of the disease. We observed that some patients in the respiratory recovery phase and testing virus-free were still metabolically highly abnormal, which indicates a new role for these technologies in assessing full systemic recovery.


Subject(s)
COVID-19/diagnosis , Chemokines/metabolism , Cytokines/metabolism , Lipoproteins/metabolism , Magnetic Resonance Spectroscopy/methods , SARS-CoV-2/metabolism , Adult , Aged , COVID-19/blood , COVID-19/virology , Chemokines/blood , Cytokines/blood , Female , Host-Pathogen Interactions , Humans , Lipoproteins/blood , Male , Metabolomics/methods , Middle Aged , Proteomics/methods , SARS-CoV-2/physiology
8.
J Proteome Res ; 19(11): 4428-4441, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-974865

ABSTRACT

Quantitative nuclear magnetic resonance (NMR) spectroscopy of blood plasma is widely used to investigate perturbed metabolic processes in human diseases. The reliability of biochemical data derived from these measurements is dependent on the quality of the sample collection and exact preparation and analysis protocols. Here, we describe systematically, the impact of variations in sample collection and preparation on information recovery from quantitative proton (1H) NMR spectroscopy of human blood plasma and serum. The effects of variation of blood collection tube sizes and preservatives, successive freeze-thaw cycles, sample storage at -80 °C, and short-term storage at 4 and 20 °C on the quantitative lipoprotein and metabolite patterns were investigated. Storage of plasma samples at 4 °C for up to 48 h, freezing at -80 °C and blood sample collection tube choice have few and minor effects on quantitative lipoprotein profiles, and even storage at 4 °C for up to 168 h caused little information loss. In contrast, the impact of heat-treatment (56 °C for 30 min), which has been used for inactivation of SARS-CoV-2 and other viruses, that may be required prior to analytical measurements in low level biosecurity facilities induced marked changes in both lipoprotein and low molecular weight metabolite profiles. It was conclusively demonstrated that this heat inactivation procedure degrades lipoproteins and changes metabolic information in complex ways. Plasma from control individuals and SARS-CoV-2 infected patients are differentially altered resulting in the creation of artifactual pseudo-biomarkers and destruction of real biomarkers to the extent that data from heat-treated samples are largely uninterpretable. We also present several simple blood sample handling recommendations for optimal NMR-based biomarker discovery investigations in SARS CoV-2 studies and general clinical biomarker research.


Subject(s)
Blood Chemical Analysis/standards , Blood Specimen Collection/instrumentation , Coronavirus Infections , Lipoproteins/blood , Magnetic Resonance Spectroscopy/methods , Pandemics , Pneumonia, Viral , Artifacts , COVID-19 , Hot Temperature , Humans , Reproducibility of Results
9.
J Proteome Res ; 19(11): 4442-4454, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-960282

ABSTRACT

The metabolic effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on human blood plasma were characterized using multiplatform metabolic phenotyping with nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Quantitative measurements of lipoprotein subfractions, α-1-acid glycoprotein, glucose, and biogenic amines were made on samples from symptomatic coronavirus disease 19 (COVID-19) patients who had tested positive for the SARS-CoV-2 virus (n = 17) and from age- and gender-matched controls (n = 25). Data were analyzed using an orthogonal-projections to latent structures (OPLS) method and used to construct an exceptionally strong (AUROC = 1) hybrid NMR-MS model that enabled detailed metabolic discrimination between the groups and their biochemical relationships. Key discriminant metabolites included markers of inflammation including elevated α-1-acid glycoprotein and an increased kynurenine/tryptophan ratio. There was also an abnormal lipoprotein, glucose, and amino acid signature consistent with diabetes and coronary artery disease (low total and HDL Apolipoprotein A1, low HDL triglycerides, high LDL and VLDL triglycerides), plus multiple highly significant amino acid markers of liver dysfunction (including the elevated glutamine/glutamate and Fischer's ratios) that present themselves as part of a distinct SARS-CoV-2 infection pattern. A multivariate training-test set model was validated using independent samples from additional SARS-CoV-2 positive patients and controls. The predictive model showed a sensitivity of 100% for SARS-CoV-2 positivity. The breadth of the disturbed pathways indicates a systemic signature of SARS-CoV-2 positivity that includes elements of liver dysfunction, dyslipidemia, diabetes, and coronary heart disease risk that are consistent with recent reports that COVID-19 is a systemic disease affecting multiple organs and systems. Metabolights study reference: MTBLS2014.


Subject(s)
Amino Acids/blood , Coronavirus Infections , Lipoproteins/blood , Models, Biological , Multiple Organ Failure , Pandemics , Pneumonia, Viral , Aged , Betacoronavirus , Biomarkers , Blood Glucose/analysis , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Coronavirus Infections/metabolism , Female , Humans , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Metabolome , Middle Aged , Multiple Organ Failure/blood , Multiple Organ Failure/etiology , Multiple Organ Failure/metabolism , Pneumonia, Viral/blood , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Pneumonia, Viral/metabolism , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL